CHPF Regulates the Aggressive Phenotypes of Hepatocellular Carcinoma Cells via the Modulation of the Decorin and TGF-β Pathways

Cancers (Basel). 2021 Mar 12;13(6):1261. doi: 10.3390/cancers13061261.

Abstract

Aberrant composition of glycans in the tumor microenvironment (TME) and abnormal expression of extracellular matrix proteins are hallmarks of hepatocellular carcinoma (HCC); however, the mechanisms responsible for establishing the TME remain unclear. We demonstrate that the chondroitin polymerizing factor (CHPF), an enzyme that mediates the elongation of chondroitin sulfate (CS), is a critical elicitor of the malignant characteristics of HCC as it modifies the potent tumor suppressor, decorin (DCN). CHPF expression is frequently downregulated in HCC tumors, which is associated with the poor overall survival of HCC patients. We observed that restoring CHPF expression suppressed HCC cell growth, migration, and invasion in vitro and in vivo. Mechanistic investigations revealed that TGF-β signaling is associated with CHPF-induced phenotype changes. We found that DCN, as a TGF-β regulator, is modified by CHPF, and that it affects the distribution of DCN on the surface of HCC cells. Importantly, our results confirm that CHPF and DCN expression levels are positively correlated in primary HCC tissues. Taken together, our results suggest that CHPF dysregulation contributes to the malignancy of HCC cells, and our study provides novel insights into the significance of CS, which affects DCN expression in the TME.

Keywords: chondroitin polymerizing factor; chondroitin sulfate; decorin; hepatocellular carcinoma; tumor microenvironment.