Abiotic Stress Response of Near-Isogenic Spring Durum Wheat Lines under Different Sowing Densities

Int J Mol Sci. 2021 Feb 19;22(4):2053. doi: 10.3390/ijms22042053.

Abstract

A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013-2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B-- both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL-- pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the "Kofa" QTL on chromosome 3B.

Keywords: drought stress; near-isogenic spring durum wheat lines; photosynthetic activity; plant densities; yield.

MeSH terms

  • Droughts
  • Genotype
  • Plant Development
  • Principal Component Analysis
  • Seasons*
  • Stress, Physiological*
  • Triticum / anatomy & histology
  • Triticum / genetics
  • Triticum / growth & development*
  • Triticum / physiology*