Inhibition of indoleamine 2,3-dioxygenase 1 synergizes with oxaliplatin for efficient colorectal cancer therapy

Mol Ther Methods Clin Dev. 2021 Jan 5:20:442-450. doi: 10.1016/j.omtm.2020.12.013. eCollection 2021 Mar 12.

Abstract

We investigated the immunogenic cell death provoked by oxaliplatin (OXA) and the involvement of OXA-induced immunosuppression in colorectal cancer. Immune-proficient or -deficient mice were employed to evaluate the therapeutic effects of OXA. Immunogenic cell death was characterized by cell-surface calreticulin, cytosol-translocated high migration rate group protein B1 (HMGB1), and secretory ATP content. Bone marrow-derived dendritic cell (BMDC) maturation and CD8+ T cell expansion were measured by flow cytometry. Expression of immunosuppressive genes was quantified by both RT-PCR and western blots. The proliferative and apoptotic indexes of xenograft tumors were evaluated by immunohistochemistry and TUNEL assays, respectively. The secretory cytokines were measured with ELISA. OXA induced immunogenic cell death of murine colorectal cancer, which greatly depended on the host immune response. OXA-pretreated CT26 cells promoted BMDC maturation and CD8+ T cell expansion. OXA significantly upregulated indoleamine 2,3-dioxygenase 1 (IDO1) in patient-derived colorectal cancer cells and in combination with the IDO1-specific inhibitor, NLG919, suppressed tumor progression. Simultaneous administration with both OXA and NLG919 greatly promoted CD8+ T cell infiltration and decreased immunosuppressive cytokine transforming growth factor β (TGF-β) production, whereas increased immunostimulatory cytokines interleukin (IL)-12p70 and interferon (IFN)-γ. We demonstrated the upregulation of IDO1 by OXA, which combined with the IDO1 inhibitor, tremendously potentiated therapeutic effects of OXA against colorectal cancer.

Keywords: IDO1; colorectal cancer; immunogenic cell death; oxaliplatin.