Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1988 May 5;263(13):6115-21.

Uptake of [3H]serotonin into plasma membrane vesicles from mouse cerebral cortex.

Author information

  • 1Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, New York, New York 10035.


Preparations of plasma membrane vesicles were used as a tool to study the properties of the serotonin transporter in the central nervous system. The vesicles were obtained after hypotonic shock of synaptosomes purified from mouse cerebral cortex. Uptake of [3H]serotonin had a Na+-dependent and Na+-independent component. The Na+-dependent uptake was inhibited by classical blockers of serotonin uptake and had a Km of 63-180 nM, and a Vmax of 0.1-0.3 pmol mg-1 s-1 at 77 mM Na+. The uptake required the presence of external Na+ and internal K+. It required a Na+ gradient ([Na+]out greater than [Na+]in) and was stimulated by a gradient of K+ ([K+]in greater than [K+]out). Replacement of Cl- by other anions (NO2-, S2O3-(2-)) reduced uptake appreciably. Gramicidin prevented uptake. Although valinomycin increased uptake somewhat, the membrane potential per se could not drive uptake because no uptake was observed when a membrane potential was generated by the SCN- ion in the absence of internal K+ and with equal [Na+] inside and outside. The increase of uptake as a function of [Na+] indicated a Km for Na+ of 118 mM and a Hill number of 2.0, suggesting a requirement of two sodium ions for serotonin transport. The present results are accommodated very well by the model developed for porcine platelet serotonin transport (Nelson, P. J., and Rudnick, G. (1979) J. Biol. Chem. 254, 10084-10089), except for the number of sodium ions that are required for transport.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk