Molecular Mechanisms of Epithelial to Mesenchymal Transition Regulated by ERK5 Signaling

Biomolecules. 2021 Jan 29;11(2):183. doi: 10.3390/biom11020183.

Abstract

Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.

Keywords: EMT; ERK5; cancer metastases; therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Cell Adhesion
  • Cytoskeleton / metabolism
  • Disease Progression
  • Epithelial-Mesenchymal Transition*
  • Extracellular Matrix / metabolism
  • Humans
  • Mitogen-Activated Protein Kinase 7 / metabolism*
  • Mutation*
  • Neoplasm Invasiveness
  • Neoplasm Metastasis
  • Neoplasms / metabolism*
  • Neoplastic Stem Cells / metabolism
  • Signal Transduction
  • Transforming Growth Factor beta / metabolism
  • Tumor Microenvironment
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Transforming Growth Factor beta
  • Tumor Necrosis Factor-alpha
  • MAPK7 protein, human
  • Mitogen-Activated Protein Kinase 7