Facile Oriented Immobilization of Histidine-Tagged Proteins on Nonfouling Cobalt Polyphenolic Self-Assembly Surfaces

ACS Biomater Sci Eng. 2017 Dec 11;3(12):3328-3337. doi: 10.1021/acsbiomaterials.7b00691. Epub 2017 Nov 2.

Abstract

In this study, a completely green and facile protocol to oriented immobilization of histidine-tagged (His-tagged) proteins based on plant polyphenolic tannic acid (TA) is described. This is the first time that TA has been applied as ionic chelators to immobilize His-tagged proteins. To reduce the nonspecific interactions between the TA and immobilized proteins, we assembled nonfouling zwitterionic poly(sulfobetaine methacrylate) (PSBMA) on the TA surface. The use of PSBMA could maintain the high activity of the His-tagged proteins and inhibit the adsorption of untagged protein to the TA surface. Subsequently, the obtained TA/PSBMA film was further chelated with CoII for specific binding to a His-tagged protein. As CoIII is more stable and inert than CoII, the chelated CoII was oxidized to CoIII. Using this approach, His-tagged Chitinase was anchored to TA/PSBMA/CoIII film as a catalyst for the hydrolysis of chitin. The loading capacity of the film for the His-tagged Chitinase can reach ∼4.0 μg/cm2. Moreover, the oriented immobilized Chitinase had high catalytic activity and excellent thermal and storage stability as well as being more resistant to proteolytic digestion by papain. This low-cost and green protein-oriented immobilization strategy may serve as a versatile platform for a range of applications, such as biomaterials, biocatalysis, sensors, drug delivery, and so on.

Keywords: His-tagged proteins; cobalt; nonfouling; oriented immobilization; tannic acid.