Small Animal IMRT Using 3D-Printed Compensators

Int J Radiat Oncol Biol Phys. 2021 Jun 1;110(2):551-565. doi: 10.1016/j.ijrobp.2020.12.028. Epub 2020 Dec 26.

Abstract

Purpose: Preclinical radiation replicating clinical intensity modulated radiation therapy (IMRT) techniques can provide data translatable to clinical practice. For this work, treatment plans were created for oxygen-guided dose-painting in small animals using inverse-planned IMRT. Spatially varying beam intensities were achieved using 3-dimensional (3D)-printed compensators.

Methods and materials: Optimized beam fluence from arbitrary gantry angles was determined using a verified model of the XRAD225Cx treatment beam. Compensators were 3D-printed with varied thickness to provide desired attenuation using copper/polylactic-acid. Spatial resolution capabilities were investigated using printed test-patterns. Following American Association of Physicists in Medicine TG119, a 5-beam IMRT plan was created for a miniaturized (∼1/8th scale) C-shape target. Electron paramagnetic resonance imaging of murine tumor oxygenation guided simultaneous integrated boost (SIB) plans conformally treating tumor to a base dose (Rx1) with boost (Rx2) based on tumor oxygenation. The 3D-printed compensator intensity modulation accuracy and precision was evaluated by individually delivering each field to a phantom containing radiochromic film and subsequent per-field gamma analysis. The methodology was validated end-to-end with composite delivery (incorporating 3D-printed tungsten/polylactic-acid beam trimmers to reduce out-of-field leakage) of the oxygen-guided SIB plan to a phantom containing film and subsequent gamma analysis.

Results: Resolution test-patterns demonstrate practical printer resolution of ∼0.7 mm, corresponding to 1.0 mm bixels at the isocenter. The miniaturized C-shape plan provides planning target volume coverage (V95% = 95%) with organ sparing (organs at risk Dmax < 50%). The SIB plan to hypoxic tumor demonstrates the utility of this approach (hypoxic tumor V95%,Rx2 = 91.6%, normoxic tumor V95%,Rx1 = 95.7%, normal tissue V100%,Rx1 = 7.1%). The more challenging SIB plan to boost the normoxic tumor rim achieved normoxic tumor V95%,Rx2 = 90.9%, hypoxic tumor V95%,Rx1 = 62.7%, and normal tissue V100%,Rx2 = 5.3%. Average per-field gamma passing rates using 3%/1.0 mm, 3%/0.7 mm, and 3%/0.5 mm criteria were 98.8% ± 2.8%, 96.6% ± 4.1%, and 90.6% ± 5.9%, respectively. Composite delivery of the hypoxia boost plan and gamma analysis (3%/1 mm) gave passing results of 95.3% and 98.1% for the 2 measured orthogonal dose planes.

Conclusions: This simple and cost-effective approach using 3D-printed compensators for small-animal IMRT provides a methodology enabling preclinical studies that can be readily translated into the clinic. The presented oxygen-guided dose-painting demonstrates that this methodology will facilitate studies driving much needed biologic personalization of radiation therapy for improvements in patient outcomes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Copper
  • Electron Spin Resonance Spectroscopy
  • Fibrosarcoma / diagnostic imaging
  • Fibrosarcoma / metabolism
  • Fibrosarcoma / radiotherapy*
  • Mice
  • Organ Sparing Treatments / methods
  • Oxygen / metabolism
  • Phantoms, Imaging
  • Polyesters
  • Printing, Three-Dimensional*
  • Proof of Concept Study
  • Radiotherapy Planning, Computer-Assisted / methods
  • Radiotherapy, Intensity-Modulated / instrumentation*
  • Radiotherapy, Intensity-Modulated / methods
  • Tumor Hypoxia
  • X-Ray Film

Substances

  • Polyesters
  • poly(lactide)
  • Copper
  • Oxygen