Extending the 3D scanning range of DMD-based scanners for femtosecond lasers

Opt Lett. 2020 Dec 15;45(24):6639-6642. doi: 10.1364/OL.409862.

Abstract

Digital micromirror devices (DMDs) have shown their potential in 2-photon imaging and microfabrication as diffractive scanners for femtosecond lasers. However, the scanning range of a DMD-based scanner is decreased by the spatial filter (SF) used to block undesired diffraction orders. Instead of an SF, we present a method of introducing and correcting aberration (ICA) to reduce the effects of these undesired diffraction orders. In ICA, aberrations are introduced by optical elements, and only the aberration of the desired diffraction order is corrected by adding a compensatory phase to the scanning phase. The scanning ranges in the y and z directions can be nearly doubled when the SF is removed. We demonstrate that ICA can be conveniently applied to a previously constructed DMD-based 2-photon microscope, and the field of view can be extended at different axial positions.