Evolution of diverse Hall effects during the successive magnetic phase transitions in Mn2.5Fe0.6Sn0.9 Kagome-lattice alloy

J Phys Condens Matter. 2021 Mar 17;33(11):115803. doi: 10.1088/1361-648X/abd337.

Abstract

Evolution of diverse Hall effects due to successive magnetic transitions has been observed in Mn2.5Fe0.6Sn0.9 by suitable chemical substitution of Fe in Mn3.1Sn0.9. This noncollinear antiferromagnetic alloy exhibits a Neel temperature of 325 K. Upon cooling from 325 K, a magnetic phase transition from noncollinear antiferromagnetism to ferromagnetism occurs at 168 K due to the tilting of magnetization towards c axis. Above this temperature, anomalous Hall resistivity ranged from 0.6 to 1.3 μΩ cm has been observed in noncollinear antiferromagnetic state. Below this temperature, a topological Hall effect (THE) starts to appear due to the non-vanishing scalar spin chirality arising from the noncoplanar spin structure. Further decreasing temperature to 132 K, another magnetic transition happens, resulting in the coexistence of ferromagnetism and antiferromagnetism, so that a Hall plateau with large hysteresis below 70 K is yielded. A hysteresis as high as ∼80 kOe is obtained in ρ xy -H at 15 K. However, the Hall plateau disappears and only anomalous Hall effect (AHE) persists when further decreasing the temperature to 5 K. The present study provides a picture of diverse magneto-transport properties correlated to the variable spin structures driven by magnetic phase transitions.