Blocking the Notch signal transduction pathway promotes tumor growth in osteosarcoma by affecting polarization of TAM to M2 phenotype

Ann Transl Med. 2020 Sep;8(17):1057. doi: 10.21037/atm-20-3881.

Abstract

Background: Osteosarcoma is a primary malignant tumor that seriously affects the health and life of patients. It is of great clinical significance to explore the molecular mechanism of osteosarcoma development and develop the corresponding therapeutic targets. Th1/Th2 cytokines in the normal human body are in a state of dynamic balance. When this balance is destroyed, it is related to many diseases such as a tumor, autoimmune disease, microbial infection, transplant rejection, among many others.

Method: The model of mouse tumor-associated macrophage (TAM) was induced by being co-cultured with inducer granulocyte-macrophage colony stimulating factor (GM-CSF) and osteosarcoma S180 cells. The Notch1 knockout mice were obtained by gene targeting technology. The distribution of M1- and M2-type TAMs in the tumor was visualized by immunofluorescence staining. And the western-blot testing was used to detect and quantified the protein level of Notch1 and Th1/Th2-type cytokines.

Results: In this study, the polarization of TAMs to the M2 phenotype occurred after coculture with osteosarcoma S180 cells and secretion level Th1/Th2-type cytokines changed. Also, the expression level of Notch1 reduced significantly. Further, the critical transcription factor Notch1 of the Notch signaling pathway was knocked out in mice. The tumor volume of Notch1 knockout mice was significantly more extensive than of the control mice. The results of microstructural observation on tumor showed that M2-type TAMs infiltrated into tumor increased with increased expression of Th2-type cytokines, but M1-type TAMs reduced with reduced expression of Th1-type cytokines.

Conclusions: According to our results, the Notch signal transduction pathway participates in tumor occurrence and growth with a negative role by maintaining Th1/Th2 balance.

Keywords: Notch; Th1/Th2 balance; inhibitory factor; osteosarcoma; tumor-associated macrophage (TAM).