Endothelial Glycocalyx-Mediated Intercellular Interactions: Mechanisms and Implications for Atherosclerosis and Cancer Metastasis

Cardiovasc Eng Technol. 2021 Feb;12(1):72-90. doi: 10.1007/s13239-020-00487-7. Epub 2020 Sep 30.

Abstract

Purpose: The endothelial glycocalyx (GCX) plays a critical role in the health of the vascular system. Degradation of the GCX has been implicated in the onset of diseases like atherosclerosis and cancer because it disrupts endothelial cell (EC) function that is meant to protect from atherosclerosis and cancer. Examples of such EC function include interendothelial cell communication via gap junctions and receptor-mediated interactions between endothelial and tumor cells. This review focuses on GCX-dependent regulation of these intercellular interactions in healthy and diseased states. The ultimate goal is to build new knowledge that can be applied to developing GCX regeneration strategies that can control intercellular interaction in order to combat the progression of diseases such as atherosclerosis and cancer.

Methods: In vitro and in vivo studies were conducted to determine the baseline expression of GCX in physiologically relevant conditions. Chemical and mechanical GCX degradation approaches were employed to degrade the GCX. The impact of intact versus degraded GCX on intercellular interactions was assessed using cytochemistry, histochemistry, a Lucifer yellow dye transfer assay, and confocal, intravital, and scanning electron microscopy techniques.

Results: Relevant to atherosclerosis, we found that GCX stability determines the expression and functionality of Cx43 in gap junction-mediated EC-to-EC communication. Relevant to cancer metastasis, we found that destabilizing the GCX through either disturbed flow-induced or enzyme induced GCX degradation results in increased E-selectin receptor-mediated EC-tumor cell interactions.

Conclusion: Our findings lay a foundation for future endothelial GCX-targeted therapy, to control intercellular interactions and limit the progression of atherosclerosis and cancer.

Keywords: Atherosclerosis; Cancer metastasis; Endothelial cells; Glycocalyx; Heparan sulfate; Sialic acid.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Atherosclerosis*
  • Cell Communication
  • Endothelial Cells
  • Gap Junctions
  • Glycocalyx
  • Humans
  • Neoplasms*