Inverse design of a single-step-etched ultracompact silicon polarization rotator

Opt Express. 2020 Sep 14;28(19):28343-28351. doi: 10.1364/OE.399052.

Abstract

We propose and experimentally demonstrate a novel ultracompact silicon polarization rotator based on equivalent asymmetric waveguide cross section in only single-step etching procedure for densely integrated on-chip mode-division multiplexing system. In the conventional mode hybridization scheme, the asymmetric waveguide cross section is employed to excite the hybridized modes to realize high performance polarization rotator with compact footprint and high polarization extinction ratio. However, the fabrication complexity severely restricts the potential application of asymmetric waveguide cross section. We use inverse-designed photonic-crystal-like subwavelength structure to realize an equivalent asymmetric waveguide cross section, which can be fabricated in only single-step etching process. Besides, a theory-assisted inverse design method based on a manually-set initial pattern is employed to optimize the device to improve design efficiency and device perform. The fabricated device exhibited high performance with a compact footprint of only 1.2 × 7.2 µm2, high extinction ratio (> 19 dB) and low insertion loss (< 0.7 dB) from 1530 to 1590 nm.