Probiotic bacteria maintain normal growth mechanisms of heat stressed broiler chickens

J Therm Biol. 2020 Aug:92:102654. doi: 10.1016/j.jtherbio.2020.102654. Epub 2020 Jul 23.

Abstract

Probiotics have growth promoting effects even under periods of heat stress challenge. More information is needed to understand the mechanisms by which probiotics maintain the growth performance. The aim of this study was to evaluate the effect of a probiotic based on Bacillus subtilis bacteria on growth related mechanisms of broilers under heat stress conditions. Specifically, growth performance, skeletal bone characteristics, skeletal muscles size, intestinal villus-crypt structure, intestinal bacteria, growth hormone (GH), insulin-like growth factor-1 (IGF-1), cholesterol, and glucose. A total of 1200 one day old Ross 308 male broilers were randomly distributed into 4 treatments, with 12 replicates per treatment and 25 birds per replicate. A 2 × 2 factorial arrangement was used; the main factors were environmental temperature (thermoneutral or heat stress) and diet (control or control + B. subtilis; 3 × 107 cfu/kg of feed). From d 22 to 35 of age, birds were either exposed to thermoneutral conditions (21 °C) or chronic heat stress (30 °C). During the same period, each group was divided into 2 subgroups and fed either the control diet or the B. subtilis supplemented diet. The results demonstrated that B. subtilis had positive effects (P < 0.05) on the body weight gain, feed conversion ratio, villus height, crypt depth, villus surface area, absorptive epithelial cell area and viable counts of intestinal beneficial bacteria. B. subtilis increased (P < 0.05) serum GH, IGF-1 and maintain normal levels of cholesterol and glucose under heat stress conditions. In addition, broilers fed B. subtilis under heat stress conditions exhibited higher (P < 0.05) skeletal muscles size and improved (P < 0.05) tibia traits and lower (P < 0.05) abdominal fat pads deposition compared with the controls. B. subtilis had no effect on rectal temperature under thermoneutral or heat stress conditions. It is concluded that B. subtilis can be used as growth promoters in broilers, particularly during the periods of heat stress conditions.

Keywords: Broiler; Growth hormone; Heat stress; Insulin-like growth factor-1.

MeSH terms

  • Animal Feed / analysis*
  • Animals
  • Bacillus subtilis / isolation & purification
  • Bacillus subtilis / physiology
  • Chickens / blood
  • Chickens / growth & development
  • Chickens / physiology*
  • Heat-Shock Response*
  • Intestines / microbiology
  • Intestines / physiology
  • Male
  • Probiotics / analysis*