New Strategy for Improving the Accuracy of Aircraft Positioning Based on GPS SPP Solution

Sensors (Basel). 2020 Aug 31;20(17):4921. doi: 10.3390/s20174921.

Abstract

The paper describes and presents a new calculation strategy for the determination of the aircraft's resultant position using the GPS (Global Positioning System) SPP (Single Point Positioning) code method. The paper developed a concept of using the weighted average model with the use of measuring weights to improve the quality of determination of the coordinates and accuracy of GPS SPP positioning. In this research, measurement weights were used as a function of the number of GPS satellites being tracked, and geometric PDOP (Position Dilution of Precision) coefficient. The calculations were made using navigation data recorded by two independent GPS receivers: Thales Mobile Mapper and Topcon HiPerPro. On the basis of the obtained results, it was found that the RMS (Root Mean Square) accuracy of positioning for XYZ geocentric coordinates was better than 1.2% to 33.7% for the weighted average method compared to a single GPS SPP solution. The proposed approach is therefore of practical application in air navigation to improve the quality of aircraft positioning.

Keywords: GPS; RMS error; SPP method; accuracy; weighted mean method.