High-Performance Zinc-Air Batteries with Scalable Metal-Organic Frameworks and Platinum Carbon Black Bifunctional Catalysts

ACS Appl Mater Interfaces. 2020 Sep 23;12(38):42696-42703. doi: 10.1021/acsami.0c10151. Epub 2020 Sep 11.

Abstract

Metal-organic framework (MOF)-related derivatives have generated significant interest in numerous energy conversion and storage applications, such as adsorption, catalysis, and batteries. However, such materials' real-world applicability is hindered because of scalability and reproducibility issues as they are produced by multistep postsynthesis modification of MOFs, often with high-temperature carbonization and/or calcination. In this process, MOFs act as self-sacrificial templates to develop functional materials at the expense of severe mass loss, and the resultant materials exhibit complex process-performance relationships. In this work, we report the direct applicability of a readily synthesized and commercially available MOF, a zeolitic imidazolate framework (ZIF-8), in a rechargeable zinc-air battery. The composite of cobalt-based ZIF-8 and platinum carbon black (ZIF-67@Pt/CB) prepared via facile solution mixing shows a promising bifunctional electrocatalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), the key charge and discharge mechanisms in a battery. ZIF-67@Pt/CB exhibits long OER/ORR activity durability, notably, a significantly enhanced ORR stability compared to Pt/CB, 85 versus 52%. Interestingly, a ZIF-67@Pt/CB-based battery delivers high performance with a power density of >150 mW cm-2 and long stability for 100 h of charge-discharge cyclic test runs. Such remarkable activities from as-produced ZIF-67 are attributed to the electrochemically driven in situ development of an active cobalt-(oxy)hydroxide nanophase and interfacial interaction with platinum nanoparticles. This work shows commercial feasibility of zinc-air batteries as MOF-cathode materials can be reproducibly synthesized in mass scale and applied as produced.

Keywords: bifunctional catalysis; metal−organic framework; platinum carbon black; zeolitic-imidazolate framework; zinc−air battery.