Different dietary starch sources alter the carcass traits, meat quality, and the profile of muscle amino acid and fatty acid in finishing pigs

J Anim Sci Biotechnol. 2020 Aug 7:11:78. doi: 10.1186/s40104-020-00484-9. eCollection 2020.

Abstract

Background: With increasing health awareness among consumers, the demand for healthier, tastier, higher quality and nutritional value pork is increasing. It has been shown that different dietary starch sources can alter the carcass traits and meat quality. However, research on the effects of different starch sources with clear different amylose/amylopectin ratio on the amino acid and fatty acid composition in Longissimus thoracis (L. thoracis) muscle of pigs is limited. This study aimed to investigate the effects of different dietary starch sources on carcass traits, meat quality, muscle amino acid and fatty acid composition, and the mRNA expression levels of genes involved in lipid metabolism and muscle fiber characteristics in finishing pigs. A total of 72 Duroc × Landrace × Large White barrows were randomly allocated to 3 different dietary treatment groups with 8 replicate pens/group and 3 pigs per pen. Tapioca starch (TS), corn starch (CS), and pea starch (PS), with amylose/amylopectin ratio of 0.11, 0.25, and 0.44, respectively, were used as their dietary starch sources for 40 days.

Results: Results showed that the PS diet significantly increased (P < 0.05) the final body weight, average daily gain, loin-eye area, and fat-free lean index compared with the TS diet, but significantly decreased (P < 0.05) the feed to gain ratio and backfat thickness. Compared with the TS diet, PS diet also increased (P < 0.05) the pH45 min, marbling scores, the content of intramuscular fat and inosine monophosphate in the L. thoracis, and decreased (P < 0.05) the drip loss and shear force. In addition, compared with the TS diet, PS diet increased (P < 0.05) the proportions of flavor amino acids, DHA, EPA, and n-3 polyunsaturated fatty acid (PUFA) in the L. thoracis compared with TS diet, but decreased (P < 0.05) the ratio of n-6/n-3 PUFA. Furthermore, compared with the TS diet, PS diet also upregulated (P < 0.05) the lipogenic genes (FAS, LPL, SCD, ACCα) and myosin heavy-chain (MyHC)-IIa mRNA expression levels compared with the TS diet, but downregulated (P < 0.05) the CPT1B and MyHC-IIb mRNA levels.

Conclusions: In conclusion, these results provided compelling evidence that the different dietary starch source altered the carcass traits, meat flavor and quality in finishing pigs, and consumption of a diet with higher amylose/amylopectin ratio results in the production of a healthy, higher quality, and nutritional value pork.

Keywords: Amino acid profile; Fatty acid composition; Finishing pigs; Lipid metabolism; Meat quality; Starch source.