Effect of ferrolysis and organic matter accumulation on chromate adsorption characteristics of an Oxisol-derived paddy soil

Sci Total Environ. 2020 Nov 20:744:140868. doi: 10.1016/j.scitotenv.2020.140868. Epub 2020 Jul 17.

Abstract

How paddy cultivation influences the adsorption isotherms, envelopes, and the kinetics of hexavalent chromate (Cr(VI)) on Fe (hydro)oxide-rich paddy soil, as well as the mechanisms involved, remain largely unaddressed. To this end, the Cr(VI) adsorption characteristics on a paddy soil, in comparison with its parent upland Oxisol, were studied. The results showed that Cr(VI) adsorption capacities (Qmad) were higher in the surface Oxisol than in the same layer of paddy soil. The Qmad increased by 18.0% and 41.3% after removal of soil organic matter (SOM) from the surface Oxisol and paddy soil layers, respectively, indicating that Cr(VI) adsorption was considerably inhibited by SOM. The adsorption and desorption isotherms demonstrated that non-electrostatic adsorption was mainly responsible for Cr(VI) adsorption, accounting for 59.37%-83.42% of Cr(VI) adsorption capacities. The negative shift of the zeta potential-pH curves with Cr(VI) loading further corroborated the finding that non-electrostatic adsorption is largely responsible for Cr(VI) retention. Cr(VI) adsorption at equilibrium, obtained by the stirred flow chamber technique, and the free Fe (hydro)oxides (Fed) contents were in the same order, suggesting that Fed are the main adsorbents for Cr(VI). Therefore, paddy cultivation has had a profound impact on the electrochemical properties of the Oxisol and on subsequent Cr(VI) adsorption characteristics.

Keywords: Adsorption mechanisms; Chromate adsorption and desorption; Fe (hydro)oxides; Oxisol; Paddy soil.