Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes

Nat Biotechnol. 2020 Sep;38(9):1044-1053. doi: 10.1038/s41587-020-0503-6. Epub 2020 May 4.

Abstract

De novo assembly of a human genome using nanopore long-read sequences has been reported, but it used more than 150,000 CPU hours and weeks of wall-clock time. To enable rapid human genome assembly, we present Shasta, a de novo long-read assembler, and polishing algorithms named MarginPolish and HELEN. Using a single PromethION nanopore sequencer and our toolkit, we assembled 11 highly contiguous human genomes de novo in 9 d. We achieved roughly 63× coverage, 42-kb read N50 values and 6.5× coverage in reads >100 kb using three flow cells per sample. Shasta produced a complete haploid human genome assembly in under 6 h on a single commercial compute node. MarginPolish and HELEN polished haploid assemblies to more than 99.9% identity (Phred quality score QV = 30) with nanopore reads alone. Addition of proximity-ligation sequencing enabled near chromosome-level scaffolds for all 11 genomes. We compare our assembly performance to existing methods for diploid, haploid and trio-binned human samples and report superior accuracy and speed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Benchmarking
  • Chromosomes, Human / genetics
  • Deep Learning
  • Genome, Human / genetics*
  • Genomics
  • HLA Antigens / genetics
  • Haploidy
  • High-Throughput Nucleotide Sequencing / methods*
  • High-Throughput Nucleotide Sequencing / standards
  • Humans
  • Nanopore Sequencing*
  • Sequence Analysis, DNA / methods*
  • Sequence Analysis, DNA / standards

Substances

  • HLA Antigens