Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Gene. 1988 Aug 15;68(1):85-91.

Human hypoxanthine-guanine phosphoribosyltransferase: a single nucleotide substitution in cDNA clones isolated from a patient with Lesch-Nyhan syndrome (HPRTMidland).

Author information

  • 1Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109.

Abstract

We have determined the molecular basis for hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency in a patient, J.H., with Lesch-Nyhan syndrome. Radioimmunoassay of lysates of erythrocytes or cultured B-lymphoblasts showed that this patient had no detectable HPRT enzyme activity or HPRT protein. HPRT-specific mRNA levels were normal by Northern analysis. We created a cDNA library from mRNA isolated from cultured lymphoblasts derived from this patient. Nucleotide sequencing of full-length HPRT cDNA clones revealed a single nucleotide (nt) substitution: a T-to-A transversion at nt 389. We have designated this variant HPRTMidland. The predicted amino acid (aa) substitution in HPRTMidland is a valine to aspartic acid at aa 130. This substitution is within 2 aa of the amino acid substitution in a previously defined HPRT variant, HPRTAnn Arbor. Both mutations are within a highly conserved sequence in the putative 5-phosphoribosyl-1-pyrophosphate-binding domain. The amino acid substitution in HPRTMidland causes a significant perturbation in the predicted secondary structure of this region. The HPRTMidland mutation affects a different domain of HPRT than the HPRTFlint mutation located at 167 nt away.

PMID:
3265398
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk