Countereffect of glutathione on divalent mercury removal by nanoscale zero-valent iron in the presence of natural organic matter

J Hazard Mater. 2020 Nov 5:398:122874. doi: 10.1016/j.jhazmat.2020.122874. Epub 2020 May 17.

Abstract

Although there have been multiple studies on the effects of natural organic matter (NOM) on zero-valent iron (ZVI) removal of several regulated heavy metal ions from contaminated water, the role of NOM on Hg(II) removal by nanoscale ZVI (nZVI) has not yet been studied. The experimental results showed that in the presence of 100 mg L-1 of Suwannee River NOM (SRNOM), the Hg(II) removal ratio by nZVI decreased from 89% to 36% after 80 min of reaction. Similar trends were observed in the long-term test maintained for 15 days, attributable to the surface passivation of nZVI by SRNOM. In contrast, addition of 100 μM glutathione (GSH) to the nZVI suspensions increased the Hg(II) removal ratio from 85% to 96% after 15 days of reaction. Furthermore, adding 100 μM of GSH to the nZVI and SRNOM suspensions largely improved the removal efficiency of Hg(II) to be > 99% after 9 days of reaction, related to the enhanced dissolution of Fe(II) and consequent formation of lepidocrocite and maghemite on the nZVI surface. The addition of thiolic compounds is suggested as a promising step in overcoming the inhibitory effect of SRNOM for the remediation of Hg(II) using nZVI technology.

Keywords: Divalent mercury; Glutathione; Nanoscale zero-valent iron; Natural organic matter; Reduction.

Publication types

  • Research Support, Non-U.S. Gov't