A RPCA-Based ISAR Imaging Method for Micromotion Targets

Sensors (Basel). 2020 May 25;20(10):2989. doi: 10.3390/s20102989.

Abstract

Micro-Doppler generated by the micromotion of a target contaminates the inverse synthetic aperture radar (ISAR) image heavily. To acquire a clear ISAR image, removing the Micro-Doppler is an indispensable task. By exploiting the sparsity of the ISAR image and the low-rank of Micro-Doppler signal in the Range-Doppler (RD) domain, a novel Micro-Doppler removal method based on the robust principal component analysis (RPCA) framework is proposed. We formulate the model of sparse ISAR imaging for micromotion target in the framework of RPCA. Then, the imaging problem is decomposed into iterations between the sub-problem of sparse imaging and Micro-Doppler extraction. The alternative direction method of multipliers (ADMM) approach is utilized to seek for the solution of each sub-problem. Furthermore, to improve the computational efficiency and numerical robustness in the Micro-Doppler extraction, an SVD-free method is presented to further lessen the calculative burden. Experimental results with simulated data validate the effectiveness of the proposed method.

Keywords: ADMM; ISAR; RPCA; micro-Doppler.