Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application

Int J Biol Macromol. 2020 Apr 27:158:9-17. doi: 10.1016/j.ijbiomac.2020.04.116. Online ahead of print.

Abstract

Developing wound dressing that inhibits bacterial infection for treating complex wound healing processes has been a research hotspot. Here, we report the fabrication of Cu-MOFs (HKUST-1) incorporated electrospun chitosan/polyvinyl alcohol (HKUST-1/chitosan/PVA) fibers through the blending electrospinning for wound therapy. HKUST-1/chitosan/PVA fibers displayed satisfying physical properties, such as mechanical property, water uptake, water vapor transmission rate, etc. Cytotoxicity test indicated that HKUST-1/chitosan/PVA fibers were biocompatible and could support cell adhesion. Due to the HKUST-1 incorporation, HKUST-1/chitosan/PVA fibers exhibited the good antibacterial activity against Escherichia coli and Staphylococcus aureus with 99% antibacterial efficiency. Furthermore, in animal studies, compared with commercial chitosan dressings and chitosan/PVA fibers, HKUST-1/chitosan/PVA fibers were more efficient to heal the wound with less inflammation. In summary, the HKUST-1/chitosan/PVA fibers with good physicochemical property, biocompatibility and antibacterial property is an excellent wound dressing for full-thickness skin repair.

Keywords: Chitosan; Electrospinning; Metal-organic framework; Wound dressing.