Improved transition metal surface energies from a generalized gradient approximation developed for quasi two-dimensional systems

J Chem Phys. 2020 Apr 21;152(15):151101. doi: 10.1063/1.5145367.

Abstract

Nonuniform density scaling in the quasi-two-dimensional (quasi-2D) regime is an important and challenging aspect of the density functional theory. Semilocal exchange-correlation energy functionals, developed by solving the dimensional crossover criterion in the quasi-2D regime, have great theoretical and practical importance. However, the only semilocal generalized gradient approximation (GGA) that has been designed to satisfy this criterion is the Q2D-GGA [L. Chiodo et al., Phys. Rev. Lett. 108, 126402 (2012)]. Here, we establish the applicability, broadness, and accuracy of the Q2D-GGA functional by performing an extensive assessment of this functional for transition metal surface energies. The important characteristic of the surface density localization and oscillation due to the rearrangement of the d electrons is also shown for different metal surfaces.