An improved method to estimate ultrasonic absorption in agar-based gel phantom using thermocouples and MR thermometry

Ultrasonics. 2020 Apr:103:106089. doi: 10.1016/j.ultras.2020.106089. Epub 2020 Jan 31.

Abstract

In this paper, a novel experimental set-up was developed that measures the absorption coefficient. The proposed system was evaluated in an agar-based gel phantom. The new experimental system provides accurate and fast measurement of the rate of temperature change within the phantom. The rate of temperature change was measured using thermocouple and was confirmed using MR thermometry. An ultrasonic transducer with a broad beam was used in order to reduce the conduction effect. The absorption coefficient of the agar-based phantom was 0.26 dB/cm-MHz using 4% agar, 30% evaporated milk and 4% silica. The absorption coefficient increased by increasing the volume of the evaporated milk, and agar. The absorption coefficient increased at low silica concentration (<4%) and then decreased at higher concentration of silica (>4%). By proper selection of evaporated milk, agar and silica concentration, it is possible to achieve similar coefficient like in soft tissues. Acoustic absorption measurement is considered as a difficult measurement in ultrasonics because obtaining the precise temperature change in the focus is challenging. Due to the quick and accurate placement of the thermocouple at the ultrasonic beam, it is possible with the proposed system to perform absorption measurement is less than one minute.

Keywords: Absorption; Agar; MRI; Silica; Ultrasound.