Optimization of Shapes and Sizes of Moth-Eye-Inspired Structures for the Enhancement of Their Antireflective Properties

Polymers (Basel). 2020 Feb 2;12(2):296. doi: 10.3390/polym12020296.

Abstract

Novel antireflective (AR) structures have attracted tremendous attention and been used in various applications such as solar cells, displays, wearable devices, and others. They have also stimulated the development of several other methods, including moth-eye-inspired technologies. However, the analyses of the shapes and sizes of nanostructures remain a critical issue and need to be considered in the design of effective AR surfaces. Herein, moth-eye and inverse-moth-eye patterned polyurethane-acrylate (PUA) structures (MPS and IMPS) with three different sizes are analyzed and compared to optimize the designed nanostructures to achieve the best optical properties pertaining to maximum transmittance and minimum reflectance. We fabricated moth-eye-inspired conical structures with three different sizes using a simple and robust fabrication method. Furthermore, the fabricated surfaces of the MPS and IMPS structures were analyzed based on the experimental and theoretical variation influences of their optical properties according to their sizes and shapes. As a result of these analyses, we herein propose a standard methodology based on the optimal structure of IMPS structure with a 300 nm diameter.

Keywords: anti-reflective surfaces; diffraction grating effect; double replication method; inverse-moth-eye structures; moth-eye structures.