Dual-Receptor-Targeted (DRT) Radiation Nanomedicine Labeled with 177Lu Is More Potent for Killing Human Breast Cancer Cells That Coexpress HER2 and EGFR Than Single-Receptor-Targeted (SRT) Radiation Nanomedicines

Mol Pharm. 2020 Apr 6;17(4):1226-1236. doi: 10.1021/acs.molpharmaceut.9b01259. Epub 2020 Mar 3.

Abstract

Resistance to HER2-targeted therapies in breast cancer (BC) is associated in some cases with an increased expression of epidermal growth factor receptors (EGFR). We describe a dual-receptor-targeted (DRT) radiation nanomedicine for local intratumoral (i.t.) treatment of BC composed of 15 nm sized gold nanoparticles (AuNPs) modified with trastuzumab (TmAb) to target HER2 and panitumumab (PmAb) to target EGFR. The AuNPs were modified with poly(ethylene glycol) (PEG3k) linked to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelators to complex the β-particle emitter, 177Lu. Our aim was to compare the properties of these DRT-AuNP-177Lu with single-receptor-targeted (SRT)-TmAb-AuNP-177Lu or PmAb-AuNP-177Lu or nontargeted (NT)-AuNP-177Lu using human BC cells that expressed HER2, EGFR, or both receptors. To construct these radiation nanomedicines, PEG5K was linked to TmAb or PmAb, while PEG3k was linked to DOTA. These polymers were conjugated to AuNP via two Au-thiol bonds using a terminal lipoic acid (LA) group on the polymers. NT-AuNP-177Lu were constructed without modification with TmAb or PmAb. MDA-MB-231-H2N, MDA-MB-468, and BT-474 human BC cells were designated as HER2mod/EGFRmod, EGFRhigh/HER2neg, and HER2high/EGFRlow, respectively, based on the expression of these receptors. Specific binding to HER2 and/or EGFR was assessed by incubating BC cells with DRT-AuNP-177Lu or TmAb-AuNP-177Lu or PmAb-AuNP-177Lu, or NT-AuNP-177Lu in the absence or presence of an excess of TmAb or PmAb or both competitors. Binding and internalization of AuNP by BC cells were assessed by dark-field microscopy. Cell fractionation studies were conducted to quantify AuNP-177Lu bound and internalized. The cytotoxicity of DRT-AuNP-177Lu was determined in clonogenic survival (CS) assays after an exposure of 5 × 105 BC cells to 3 MBq (1.4 × 1012 AuNP) for 16 h and then seeding and culturing the cells for 7-15 days. CS was compared to exposure to TmAb-AuNP-177Lu and PmAb-AuNP-177Lu or NT-AuNP-177Lu. The absorbed doses to the nucleus in these CS assays were estimated. DRT-AuNP-177Lu were specifically bound by BC cells that expressed HER2 or EGFR or both receptors. In contrast, SRT-TmAb-AuNP-177Lu and PmAb-AuNP-177Lu were bound and internalized only by BC cells that expressed HER2 or EGFR, respectively. NT-AuNP-177Lu exhibited very low binding to BC cells. DRT-AuNP-177Lu and SRT-TmAb-AuNP-177Lu or PmAb-AuNP-177Lu were internalized by BC cells in accordance with the receptor expression. Importantly, DRT-AuNP-177Lu were more potent in vitro than PmAb-AuNP-177Lu for killing MDA-MB-231-H2N cells that coexpress HER2 and EGFR (CS = 18.8 ± 1.0 vs 51.5 ± 10.4%; P = 0.006). Furthermore, DRT-AuNP-177Lu were more potent for killing BT-474 cells with high HER2 but low EGFR expression than TmAb-AuNP-177Lu (CS = 8.9 ± 3.3 vs 20.7 ± 2.4%; P = 0.007) or PmAb-AuNP-177Lu (CS = 63.9 ± 1.7%; P < 0.0001). Even for MDA-MB-468 cells that overexpress EGFR but have negligible HER2, DRT-AuNP-177Lu were more potent for cell killing than PmAb-AuNP-177Lu (CS = 3.2 ± 3.0 vs 7.5 ± 1.8%; P = 0.001) or TmAb-AuNP-177Lu (63.2 ± 3.2%; P = 0.0002). All targeted forms of AuNP-177Lu were more cytotoxic to BC cells than those of NT-AuNP-177Lu. High absorbed doses (36-119 Gy) were deposited in the nucleus of BC cells by DRT-AuNP-177Lu. We conclude that a DRT radiation nanomedicine is more potent for killing BC cells that coexpress HER2 and EGFR than SRT radiation nanomedicines. These results are promising for further evaluation of these DRT-AuNP-177Lu in vivo for the local radiation treatment of human BC tumors that coexpress HER2 and EGFR in mice following i.t. injection, especially tumors that are resistant to HER2-targeted therapies.

Keywords: EGFR; HER2; breast cancer; gold nanoparticles; panitumumab; trastuzumab, lutetium-177.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Beta Particles
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / radiotherapy*
  • Cell Line, Tumor
  • ErbB Receptors / metabolism
  • Female
  • Gold / chemistry
  • Humans
  • Immunoconjugates / chemistry
  • Immunoconjugates / pharmacology
  • Lutetium / chemistry*
  • Metal Nanoparticles / chemistry
  • Nanomedicine / methods
  • Panitumumab / chemistry
  • Panitumumab / pharmacology
  • Polyethylene Glycols / chemistry
  • Radioimmunotherapy / methods
  • Radioisotopes / chemistry*
  • Radiopharmaceuticals / chemistry
  • Radiopharmaceuticals / pharmacology
  • Receptor, ErbB-2 / metabolism*
  • Trastuzumab / chemistry
  • Trastuzumab / pharmacology

Substances

  • Immunoconjugates
  • Radioisotopes
  • Radiopharmaceuticals
  • Polyethylene Glycols
  • Lutetium
  • Panitumumab
  • Gold
  • Lutetium-177
  • EGFR protein, human
  • ERBB2 protein, human
  • ErbB Receptors
  • Receptor, ErbB-2
  • Trastuzumab