Curation and annotation of planarian gene expression patterns with segmented reference morphologies

Bioinformatics. 2020 May 1;36(9):2881-2887. doi: 10.1093/bioinformatics/btaa023.

Abstract

Motivation: Morphological and genetic spatial data from functional experiments based on genetic, surgical and pharmacological perturbations are being produced at an extraordinary pace in developmental and regenerative biology. However, our ability to extract knowledge from these large datasets are hindered due to the lack of formalization methods and tools able to unambiguously describe, centralize and interpret them. Formalizing spatial phenotypes and gene expression patterns is especially challenging in organisms with highly variable morphologies such as planarian worms, which due to their extraordinary regenerative capability can experimentally result in phenotypes with almost any combination of body regions or parts.

Results: Here, we present a computational methodology and mathematical formalism to encode and curate the morphological outcomes and gene expression patterns in planaria. Worm morphologies are encoded with mathematical graphs based on anatomical ontology terms to automatically generate reference morphologies. Gene expression patterns are registered to these standard reference morphologies, which can then be annotated automatically with anatomical ontology terms by analyzing the spatial expression patterns and their textual descriptions. This methodology enables the curation and annotation of complex experimental morphologies together with their gene expression patterns in a centralized standardized dataset, paving the way for the extraction of knowledge and reverse-engineering of the much sought-after mechanistic models in planaria and other regenerative organisms.

Availability and implementation: We implemented this methodology in a user-friendly graphical software tool, PlanGexQ, freely available together with the data in the manuscript at https://lobolab.umbc.edu/plangexq.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Computational Biology
  • Gene Expression
  • Phenotype
  • Planarians* / genetics
  • Software