Photon-assisted spin transport in blue phosphorene nanotubes

Nanotechnology. 2020 Apr 3;31(14):145206. doi: 10.1088/1361-6528/ab6680. Epub 2019 Dec 31.

Abstract

We have investigated photon-assisted spin injection into blue phosphorene nanotubes (PNTs) with ferromagnetic cobalt electrodes by nonequilibrium Green's function combined with light-matter interaction based on the first-order Born approximation. The results show the photo-induced spin current. The spin up and spin down photocurrents flow in opposite directions for zigzag blue nanotubes (ZPNTs) with anti-parallel magnetic configuration of the electrodes. By changing the structures of the blue phosphorene nanotube and the magnetization of the electrodes, multitudes of quantum spin transport properties are investigated, such as the nearly perfect photo-induced spin current and strong photo-polarization current signal. The results suggest that ZPNTs could serve as a potential material candidate for optical communication devices.