Pump Polarization and Size Effects on the Performance of Polymer Lasers

Polymers (Basel). 2019 Dec 7;11(12):2031. doi: 10.3390/polym11122031.

Abstract

The parameters of a pump have a marked influence on the performance of distributed feedback polymer lasers. Our polymer laser consisted of a grating and a polymer film. We fabricated the grating using interference lithography. The polymer film was spin coated on the grating. A half-wave plate was used to change the pump polarization, and an x-y slit was used to change the pump size. The direction of grating lines were parallel to the x axis of the slit. The laser performance was modified by changing the polarizations and sizes of the pump beam. The lasing threshold increased more rapidly with decreasing pump size in the y direction than in the x direction. The influence of the pump polarization on the lasing threshold for decreasing pump size in the x direction was greater than that for decreasing pump size in the y direction. These results may be useful for the miniaturization of distributed feedback polymer lasers.

Keywords: polymer lasers; pump polarizations; pump sizes.