Effect of neonatal denervation-reinnervation on the functional capacity of a 129ReJ dy/dy murine dystrophic muscle

Exp Neurol. 1988 Nov;102(2):210-6. doi: 10.1016/0014-4886(88)90095-7.

Abstract

The sciatic nerves of 14-day-old 129 ReJ normal (++) and dystrophic (dy/dy) mice were transected in the mid-thigh region. The cut ends of the nerves were approximated to facilitate regeneration. One hundred days after denervation, contractile properties of denervated-reinnervated, normal and dystrophic extensor digitorum longus (EDL) muscles were compared to age-matched normal and dystrophic muscles. In dystrophic muscle, in vitro twitch and tetanic tensions were reduced, compared to those of normal muscle. The denervation-reinnervation procedure resulted in an increase in these parameters as compared to unoperated dy muscle. These data correlated with increases in total myofiber cross-sectional areas. Twitch contraction time was not significantly affected by the dystrophic condition or by the denervation-reinnervation protocol. Whereas dystrophic muscle had a longer half-relaxation time than normal muscle, denervation-reinnervation of the dystrophic EDL resulted in a significantly faster half-relaxation time. While fatigue resistance was greater in dystrophic muscles than in normal muscle, there was a significant decrease in fatigue resistance in the denervated-reinnervated dystrophic muscle. Transient neonatal denervation results in modification of both the morphological and physiological characteristics of murine dystrophy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Animals, Newborn / physiology*
  • Electric Stimulation
  • Female
  • Mice
  • Mice, Inbred Strains
  • Mice, Mutant Strains
  • Microscopy, Electron
  • Muscle Contraction
  • Muscle Denervation*
  • Muscles / pathology
  • Muscles / physiopathology*
  • Muscles / ultrastructure
  • Muscular Dystrophy, Animal / genetics
  • Muscular Dystrophy, Animal / pathology
  • Muscular Dystrophy, Animal / physiopathology*
  • Nerve Regeneration*