Sensitization of Hypoxic Tumor to Photodynamic Therapy via Oxygen Self-Supply of Fluorinated Photosensitizers

Biomacromolecules. 2019 Dec 9;20(12):4563-4573. doi: 10.1021/acs.biomac.9b01368. Epub 2019 Nov 25.

Abstract

Photodynamic therapy (PDT) utilizes photosensitizers to convert innoxious oxygen to cytotoxic reactive oxygen species under an appropriate light, thus inducing cancer cells necrosis. However, PDT performs in an oxygen-dependent method to destroy cells while hypoxia is a feature for most solid tumors. To effectively improve the PDT effect against solid tumors, an oxygen self-supplying and pH-sensitive therapeutic nanoparticle (PTFC) has been developed by the self-assembly of a tetrakis(pentafluorophenyl) chlorin (TFPC)-conjugated block copolymer (POEGMA-b-P(DEAEMA-co-GMA)). PTFC nanoparticles can transport oxygen to a tumor site with their accumulation in the tumor on account of the good oxygen solubility, therefore relieving the oxygen deficiency of a solid tumor and enhancing the PDT efficacy. It is worth noting that the oxygen loading was realized by the fluorinated photosensitizer itself. In addition, the phototoxicity of PTFC nanoparticles is greatly improved in an acidic aqueous environment due to the DEAEMA unit protonation, which not only enhanced the cellular uptake of nanoparticles but also weakened the aggregation of photosensitizers. Taking the hypoxia and acidic microenvironment of solid tumors, PTFC nanoparticles could be efficiently taken up and disassembled to release oxygen upon accumulation at tumor sites, thus significantly improving the PDT efficacy against solid tumors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Hypoxia / drug effects
  • Cell Line, Tumor
  • Female
  • Mammary Neoplasms, Experimental / drug therapy*
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology
  • Mice
  • Mice, Inbred BALB C
  • Nanoparticles* / chemistry
  • Nanoparticles* / therapeutic use
  • Oxygen / chemistry
  • Oxygen / pharmacology*
  • Photochemotherapy*
  • Photosensitizing Agents* / chemical synthesis
  • Photosensitizing Agents* / chemistry
  • Photosensitizing Agents* / pharmacology
  • Tumor Microenvironment / drug effects*

Substances

  • Photosensitizing Agents
  • Oxygen