Hepatic Stearoyl-CoA desaturase-1 deficiency-mediated activation of mTORC1- PGC-1α axis regulates ER stress during high-carbohydrate feeding

Sci Rep. 2019 Oct 31;9(1):15761. doi: 10.1038/s41598-019-52339-7.

Abstract

Stearoyl CoA desaturase 1 (SCD1) is a key enzyme in lipogenesis as it catalyzes the synthesis of monounsaturated fatty acids (MUFAs), mainly oleate (18:1n9) and palmitoleate (16:1n7) from saturated fatty acids (SFA), stearate (18:0) and palmitate (16:0), respectively. Studies on SCD1 deficiency in mouse models demonstrated beneficial metabolic phenotypes such as reduced adiposity and improved glucose tolerance. Even though, SCD1 represents a potential target to resolve obesity related metabolic diseases; SCD1 deficiency causes endoplasmic reticulum (ER) stress and activates unfolded protein response (UPR). The induction of ER stress in response to SCD1 deficiency is governed by the cofactor, PGC-1α. However, the mechanism by which SCD1 deficiency increases PGC-1α and subsequently induces ER stress still remains elusive. The present study demonstrates that despite reduced lipogenesis, liver specific SCD1 deficiency activates the mechanistic target of rapamycin complex 1 (mTORC1) along with induction of PGC-1α and ER stress. Further, mTORC1 inhibition attenuates SCD1 deficiency-mediated induction of both PGC-1α and ER stress. Similar observations were seen by restoring endogenously synthesized oleate, but not palmitoleate, suggesting a clear mTORC1-mediated regulation of ER stress during SCD1 deficiency. Overall, our results suggest a model whereby maintaining adequate levels of hepatic oleate is required to suppress mTORC1-mediated ER stress. In addition, the activation of mTORC1 by SCD1 deficiency reveals an important function of fatty acids in regulating different cellular processes through mTORC1 signaling.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Dietary Carbohydrates / pharmacology*
  • Endoplasmic Reticulum Stress* / drug effects
  • Endoplasmic Reticulum Stress* / genetics
  • Liver / metabolism*
  • Mechanistic Target of Rapamycin Complex 1 / genetics
  • Mechanistic Target of Rapamycin Complex 1 / metabolism*
  • Mice
  • Mice, Knockout
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / genetics
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha / metabolism*
  • Signal Transduction* / drug effects
  • Signal Transduction* / genetics
  • Stearoyl-CoA Desaturase / deficiency*
  • Stearoyl-CoA Desaturase / metabolism

Substances

  • Dietary Carbohydrates
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Ppargc1a protein, mouse
  • Scd1 protein, mouse
  • Stearoyl-CoA Desaturase
  • Mechanistic Target of Rapamycin Complex 1