GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p Ka Predictions with Single-pH Simulations

J Chem Inf Model. 2019 Nov 25;59(11):4821-4832. doi: 10.1021/acs.jcim.9b00754. Epub 2019 Nov 14.

Abstract

We present a GPU implementation of the continuous constant pH molecular dynamics (CpHMD) based on the most recent generalized Born implicit-solvent model in the pmemd engine of the Amber molecular dynamics package. To test the accuracy of the tool for rapid pKa predictions, a series of 2 ns single-pH simulations were performed for over 120 titratable residues in 10 benchmark proteins that were previously used to test the various continuous CpHMD methods. The calculated pKa's showed a root-mean-square deviation of 0.80 and correlation coefficient of 0.83 with respect to experiment. Also, 90% of the pKa's were converged with estimated errors below 0.1 pH units. Surprisingly, this level of accuracy is similar to our previous replica-exchange simulations with 2 ns per replica and an exchange attempt frequency of 2 ps-1 (Huang, Harris, and Shen J. Chem. Inf. Model. 2018 , 58 , 1372 - 1383 ). Interestingly, for the linked titration sites in two enzymes, although residue-specific protonation state sampling in the single-pH simulations was not converged within 2 ns, the protonation fraction of the linked residues appeared to be largely converged, and the experimental macroscopic pKa values were reproduced to within 1 pH unit. Comparison with replica-exchange simulations with different exchange attempt frequencies showed that the splitting between the two macroscopic pKa's is underestimated with frequent exchange attempts such as 2 ps-1, while single-pH simulations overestimate the splitting. The same trend is seen for the single-pH vs replica-exchange simulations of a hydrogen-bonded aspartyl dyad in a much larger protein. A 2 ns single-pH simulation of a 400-residue protein takes about 1 h on a single NVIDIA GeForce RTX 2080 graphics card, which is over 1000 times faster than a CpHMD run on a single CPU core of a high-performance computing cluster node. Thus, we envision that GPU-accelerated continuous CpHMD may be used in routine pKa predictions for a variety of applications, from assisting MD simulations with protonation state assignment to offering pH-dependent corrections of binding free energies and identifying reactive hot spots for covalent drug design.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacterial Proteins / chemistry
  • Humans
  • Hydrogen Bonding
  • Hydrogen-Ion Concentration
  • Molecular Dynamics Simulation*
  • Protein Conformation
  • Proteins / chemistry*
  • Protons
  • Software
  • Solvents / chemistry
  • Thermodynamics

Substances

  • Bacterial Proteins
  • Proteins
  • Protons
  • Solvents