Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1985 Aug;82(16):5275-9.

Defective antitermination of rRNA transcription and derepression of rRNA and tRNA synthesis in the nusB5 mutant of Escherichia coli.


The nusB5 mutant of Escherichia coli was originally selected for reduced ability to support the antitermination of transcription that is mediated by the gene N product of bacteriophage lambda. By analyzing pulse-labeled RNA with an RNA.DNA filter hybridization technique, we have shown that, in the nusB5 mutant, the ratio of promoter-proximal rRNA transcripts to promoter-distal transcripts is increased at least by a factor of 1.6; that is, in the absence of the functional nusB gene product, premature transcription termination takes place within rRNA operons. These results demonstrate that rRNA transcription in E. coli utilizes an antitermination mechanism that has at least one factor in common with the phage lambda system, the nusB gene product. We have also observed that the transcription initiation frequency at rRNA promoters is increased in the nusB5 strain and that this strain accumulates 30S and 50S ribosomal subunits at approximately the same rate as the parent. Thus, it appears that E. coli compensates for premature termination of rRNA transcription by derepressing rRNA operon expression. The increase in rRNA promoter activity in the nusB5 mutant is accompanied by a parallel derepression of synthesis of tRNAs that are not encoded by rRNA operons. These results are consistent with a model for negative feedback regulation of rRNA and tRNA synthesis by products of rRNA operons.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk