Association between sequence variants in cadmium-related genes and the cadmium accumulation trait in thermo-sensitive genic male sterile rice

Breed Sci. 2019 Sep;69(3):455-463. doi: 10.1270/jsbbs.18191. Epub 2019 Jul 10.

Abstract

Although cultivation of hybrid rice varieties has been increasing, there are risks that high levels of cadmium (Cd) will accumulate in grain when such rice is grown in Cd-polluted environments. To produce Cd-safe hybrid rice, one practical approach is the generation of low Cd-accumulating parental lines. In two-line hybrid breeding, thermosensitive genic male sterile (TGMS) lines function as female parents to yield hybrid seeds. Recently, Cd accumulation-related genes have been identified; however, the effect of these genes on Cd accumulation in the grains of TGMS lines has yet to be reported. Here, 174 TGMS lines were selected for Cd accumulation phenotyping, and 30 TGMS lines, including 15 stable low-Cd and 15 high-Cd lines, were selected for single-nucleotide polymorphism (SNP) genotyping and association analysis. Association studies were conducted to identify the relationship between Cd accumulation and variable sites within seven candidate Cd-associated genes using logistic models. Nine sequence variant sites in four of the candidate genes were found to be significantly associated with Cd accumulation, two of which in OsNRAMP1 and OsNRAMP5 are low-Cd favorable variants, explaining 46.4% and 22.6% of the phenotypic variation, respectively. These loci could be developed as new molecular markers for identification of Cd accumulation characteristics and low-Cd marker-assisted breeding.

Keywords: Cd accumulation; association analysis; hybrid rice; molecular marker; variant loci.