Audio-Tactile Skinny Buttons for Touch User Interfaces

Sci Rep. 2019 Sep 16;9(1):13290. doi: 10.1038/s41598-019-49640-w.

Abstract

This study proposes a novel skinny button with multimodal audio and haptic feedback to enhance the touch user interface of electronic devices. The active material in the film-type actuator is relaxor ferroelectric polymer (RFP) poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] blended with poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)], which produces mechanical vibrations via the fretting vibration phenomenon. Normal pressure applied by a human fingertip on the film-type skinny button mechanically activates the locally concentrated electric field under the contact area, thereby producing a large electrostrictive strain in the blended RFP film. Multimodal audio and haptic feedback is obtained by simultaneously applying various electric signals to the pairs of ribbon-shaped top and bottom electrodes. The fretting vibration provides tactile feedback at frequencies of 50-300 Hz and audible sounds at higher frequencies of 500 Hz to 1 kHz through a simple on-off mechanism. The advantage of the proposed audio-tactile skinny button is that it restores the "click" sensation to the popular virtual touch buttons employed in contemporary electronic devices.