Electronic Transport Properties of Silicane Determined from First Principles

Materials (Basel). 2019 Sep 11;12(18):2935. doi: 10.3390/ma12182935.

Abstract

Silicane, a hydrogenated monolayer of hexagonal silicon, is a candidate material for future complementary metal-oxide-semiconductor technology. We determined the phonon-limited mobility and the velocity-field characteristics for electrons and holes in silicane from first principles, relying on density functional theory. Transport calculations were performed using a full-band Monte Carlo scheme. Scattering rates were determined from interpolated electron-phonon matrix elements determined from density functional perturbation theory. We found that the main source of scattering for electrons and holes was the ZA phonons. Different cut-off wavelengths ranging from 0.58 nm to 16 nm were used to study the possible suppression of the out-of-plane acoustic (ZA) phonons. The low-field mobility of electrons (holes) was obtained as 5 (10) cm2/(Vs) with a long wavelength ZA phonon cut-off of 16 nm. We showed that higher electron (hole) mobilities of 24 (101) cm2/(Vs) can be achieved with a cut-off wavelength of 4 nm, while completely suppressing ZA phonons results in an even higher electron (hole) mobility of 53 (109) cm2/(Vs). Velocity-field characteristics showed velocity saturation at 3 × 105 V/cm, and negative differential mobility was observed at larger fields. The silicane mobility was competitive with other two-dimensional materials, such as transition-metal dichalcogenides or phosphorene, predicted using similar full-band Monte Carlo calculations. Therefore, silicon in its most extremely scaled form remains a competitive material for future nanoscale transistor technology, provided scattering with out-of-plane acoustic phonons could be suppressed.

Keywords: DFPT; DFT; Monte Carlo; mobility; phonon scattering; silicane.