The effect of phenology on the carbon exchange process in grassland and maize cropland ecosystems across a semiarid area of China

Sci Total Environ. 2019 Dec 10:695:133868. doi: 10.1016/j.scitotenv.2019.133868. Epub 2019 Aug 10.

Abstract

Phenology plays an important role in the carbon exchange process. Seven years of continuous eddy covariance data across two different ecosystems in a semiarid area were used to investigate the variation in phenology indices, its effect on the carbon exchange process, and responses to climate change. The results showed that there was large annual variation for vegetation phenology. The GSL (growing season length) displayed an obvious increasing trend for the grassland ecosystem during the 7 years, and it was most determined by SOS (the start day of growing season). The growing season was divided into three periods, the recovery period (S1), the stable period (S2), and the senescence period (S3). Both ecosystems had a similar ratio of Re (ecosystem respiration) to GPP (gross primary production) during S1 and S2 periods but a much larger Re/GPP ratio during the last growing period. The inter-annual variation of the peak rate was most responsible for the NEP (net ecosystem production) and its components (GPP and Re) in both ecosystems. The inter-annual variation of recovery rate, GSL and SOS was found to be closely correlated to Re for the grassland ecosystem, while that could not be found for the cropland ecosystem. The temperature in June was most closely correlated with the peak rate of GPP and NEP for grassland ecosystem, with a significant correlation coefficient of -0.90 and -0.82, respectively. Meanwhile, the precipitation in July was found to be closely correlated with GPP for both ecosystems, with a similar correlation coefficient of 0.83. The precipitation and temperature roughly exhibited an inverse effect on vegetation phenology in this semiarid area. The variation of temperature in the early month and precipitation in mid growing season showed a more significant effect on main phenology indicators for the cropland ecosystem than those for grassland ecosystem.

Keywords: Carbon exchange; Eddy covariance; Phenology; Semiarid area.

MeSH terms

  • Agriculture
  • Carbon Cycle*
  • China
  • Climate Change
  • Crops, Agricultural
  • Grassland*
  • Seasons
  • Zea mays*