1D Carbon-Based Nanocomposites for Electrochemical Energy Storage

Small. 2019 Nov;15(48):e1902348. doi: 10.1002/smll.201902348. Epub 2019 Aug 13.

Abstract

Electrochemical energy storage (EES) devices have attracted immense research interests as an effective technology for utilizing renewable energy. 1D carbon-based nanostructures are recognized as highly promising materials for EES application, combining the advantages of functional 1D nanostructures and carbon nanomaterials. Here, the recent advances of 1D carbon-based nanomaterials for electrochemical storage devices are considered. First, the different categories of 1D carbon-based nanocomposites, namely, 1D carbon-embedded, carbon-coated, carbon-encapsulated, and carbon-supported nanostructures, and the different synthesis methods are described. Next, the practical applications and optimization effects in electrochemical energy storage devices including Li-ion batteries, Na-ion batteries, Li-S batteries, and supercapacitors are presented. After that, the advanced in situ detection techniques that can be used to investigate the fundamental mechanisms and predict optimization of 1D carbon-based nanocomposites are discussed. Finally, an outlook for the development trend of 1D carbon-based nanocomposites for EES is provided.

Keywords: 1D nanostructures; carbon; electrochemical energy storage; nanocomposites.

Publication types

  • Review