Stimulation of P2Y11 receptor protects human cardiomyocytes against Hypoxia/Reoxygenation injury and involves PKCε signaling pathway

Sci Rep. 2019 Aug 12;9(1):11613. doi: 10.1038/s41598-019-48006-6.

Abstract

Sterile inflammation is a key determinant of myocardial reperfusion injuries. It participates in infarct size determination in acute myocardial infarction and graft rejection following heart transplantation. We previously showed that P2Y11 exerted an immunosuppressive role in human dendritic cells, modulated cardiofibroblasts' response to ischemia/reperfusion in vitro and delayed graft rejection in an allogeneic heterotopic heart transplantation model. We sought to investigate a possible role of P2Y11 in the cellular response of cardiomyocytes to ischemia/reperfusion. We subjected human AC16 cardiomyocytes to 5 h hypoxia/1 h reoxygenation (H/R). P2Y11R (P2Y11 receptor) selective agonist NF546 and/or antagonist NF340 were added at the onset of reoxygenation. Cellular damages were assessed by LDH release, MTT assay and intracellular ATP level; intracellular signaling pathways were explored. The role of P2Y11R in mitochondria-derived ROS production and mitochondrial respiration was investigated. In vitro H/R injuries were significantly reduced by P2Y11R stimulation at reoxygenation. This protection was suppressed with P2Y11R antagonism. P2Y11R stimulation following H2O2-induced oxidative stress reduced mitochondria-derived ROS production and damages through PKCε signaling pathway activation. Our results suggest a novel protective role of P2Y11 in cardiomyocytes against reperfusion injuries. Pharmacological post-conditioning targeting P2Y11R could therefore contribute to improve myocardial ischemia/reperfusion outcomes in acute myocardial infarction and cardiac transplantation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / administration & dosage
  • Cardiotonic Agents / pharmacology
  • Heart Transplantation
  • Humans
  • Myocardial Infarction / prevention & control
  • Myocytes, Cardiac / drug effects*
  • Myocytes, Cardiac / enzymology
  • Oxygen / metabolism
  • Protein Kinase C-epsilon / metabolism*
  • Purinergic P2 Receptor Agonists / pharmacology
  • Receptors, Purinergic P2 / drug effects*
  • Reperfusion Injury / prevention & control*
  • Signal Transduction*

Substances

  • Cardiotonic Agents
  • P2RY11 protein, human
  • Purinergic P2 Receptor Agonists
  • Receptors, Purinergic P2
  • Adenosine Triphosphate
  • Protein Kinase C-epsilon
  • Oxygen