Modulation of the free sphingosine levels in human neutrophils by phorbol esters and other factors

J Biol Chem. 1988 Jul 5;263(19):9304-9.

Abstract

Because free long-chain bases have been recently found to have potent pharmacological effects when added to neutrophils (Wilson, E., Olcott, M. C., Bell, R. M., Merrill, A. H., Jr., and Lambeth, J. D. (1986) J. Biol. Chem. 261, 12616-12623) and other cell types, the levels in human neutrophils were measured by high-performance liquid chromatography. Sphingosine was the major free long-chain base in freshly isolated cells and ranged from 13 to 101 pmol/10(7) cells for different donors (mean +/- S.E. of 50 +/- 5, n = 17). Upon incubation at 37 degrees C, there was a time-dependent increase in free sphingosine (57 +/- 8% in 1 h, n = 17), but no change was seen at 4 or 25 degrees C. The sphingosine was apparently derived from more complex sphingolipids because little (less than 1%) could be accounted for by new synthesis from [14C]serine. Greater increases in free sphingosine were obtained when neutrophils were incubated with serum, plasma, or serum lipoproteins (about 2-fold higher than for cells incubated alone). In contrast, agonists such as phorbol 12-myristate 13-acetate, A23187, arachidonic acid, low concentrations (10 nM) of N-formyl-methionyl-leucyl-phenylalanine, and opsonized zymosan either decreased the amount of free sphingosine or blunted the time-dependent increase. This may be due to enhanced removal of free sphingosine because phorbol 12-myristate 13-acetate-treated cells exhibited an increased conversion of exogenously added [3H]sphinganine to ceramides. Endogenous sphingosine was approximately one-tenth the level found in neutrophils when exogenous long-chain bases were added to inhibit protein kinase C. Hence, depending on the subcellular localization of the endogenous versus exogenous long-chain bases, the amounts of free sphingosine in neutrophils might be sufficient to affect the function of these cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Calcimycin / pharmacology
  • Culture Media
  • Humans
  • In Vitro Techniques
  • Kinetics
  • Lipoproteins / blood
  • N-Formylmethionine Leucyl-Phenylalanine / pharmacology
  • Neutrophils / drug effects
  • Neutrophils / metabolism*
  • Sphingosine / blood*
  • Tetradecanoylphorbol Acetate / pharmacology*
  • Zymosan / pharmacology

Substances

  • Culture Media
  • Lipoproteins
  • Calcimycin
  • N-Formylmethionine Leucyl-Phenylalanine
  • Zymosan
  • Sphingosine
  • Tetradecanoylphorbol Acetate