Intramuscular inflammatory and resolving lipid profile responses to an acute bout of resistance exercise in men

Physiol Rep. 2019 Aug;7(13):e14108. doi: 10.14814/phy2.14108.

Abstract

Lipid mediators including classical arachidonic acid-derived eicosanoids (e.g. prostaglandins and leukotrienes) and more recently identified specialized pro-resolving-mediator metabolites of the omega-3 fatty acids play essential roles in initiation, self-limitation, and active resolution of acute inflammatory responses. In this study, we examined the bioactive lipid mediator profile of human skeletal muscle at rest and following acute resistance exercise. Twelve male subjects completed a single bout of maximal isokinetic unilateral knee extension exercise and muscle biopsies were taken from the m.vastus lateralis before and at 2, 4, and 24 h of recovery. Muscle tissue lipid mediator profile was analyzed via liquid chromatography-mass spectrometry (LC-MS)-based targeted lipidomics. At 2 h postexercise, there was an increased intramuscular abundance of cyclooxygenase (COX)-derived thromboxanes (TXB2 : 3.33 fold) and prostaglandins (PGE2 : 2.52 fold and PGF : 1.77 fold). Resistance exercise also transiently increased muscle concentrations of lipoxygenase (LOX) pathway-derived leukotrienes (12-Oxo LTB4 : 1.49 fold and 20-COOH LTB4 : 2.91 fold), monohydroxy-eicosatetraenoic acids (5-HETE: 2.66 fold, 12-HETE: 2.83 fold, and 15-HETE: 1.69 fold) and monohydroxy-docosahexaenoic acids (4-HDoHE: 1.69 fold, 7-HDoHE: 1.58 fold and 14-HDoHE: 2.35 fold). Furthermore, the abundance of CYP pathway-derived epoxy- and dihydroxy-eicosatrienoic acids was increased in 2 h postexercise biopsies (5,6-EpETrE: 2.48 fold, 11,12-DiHETrE: 1.66 fold and 14,15-DiHETrE: 2.23 fold). These data reveal a range of bioactive lipid mediators as present within human skeletal muscle tissue and demonstrate that acute resistance exercise transiently stimulates the local production of both proinflammatory eicosanoids and pathway markers in specialized proresolving mediator biosynthesis circuits.

Keywords: Exercise recovery; inflammation; inflammatory resolution; lipids.

MeSH terms

  • Arachidonic Acids / metabolism
  • Eicosapentaenoic Acid / metabolism
  • Humans
  • Lipid Metabolism*
  • Lipoxygenase / metabolism
  • Male
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / physiology
  • Prostaglandins / metabolism
  • Resistance Training / methods*
  • Thromboxanes / metabolism
  • Young Adult

Substances

  • Arachidonic Acids
  • Prostaglandins
  • Thromboxanes
  • Eicosapentaenoic Acid
  • Lipoxygenase