Design, synthesis and activity of novel 2,6-disubstituted purine derivatives, potential small molecule inhibitors of signal transducer and activator of transcription 3

Eur J Med Chem. 2019 Oct 1:179:218-232. doi: 10.1016/j.ejmech.2019.06.017. Epub 2019 Jun 21.

Abstract

Sustained activation of STAT3 is closely related to the cancer development, but the inhibitors for STAT3 overexpression are still in the clinical research stage. In this study, a series of 2,6-disubstituted purine derivatives were designed and synthesized, and their biological activities, as small molecule inhibitors of STAT3, were assessed. Compound PD26-TL07 exhibited remarkable antiproliferative activity against three cancer cell lines (IC50 values for HCT-116, SW480 and MDA-MB-231 were 1.77 ± 0.35, 1.51 ± 0.19, and 1.25 ± 0.38 μM, respectively). Moreover, detailed biological assays revealed that PD26-TL07 could effectively inhibited STAT3 phosphorylation, and had little inhibition to others'. The newly discovered PD26-TL07 displayed an expecting anticancer effect both in vitro and in vivo. The molecular docking models revealed that PD26-TL07 could bind to the SH2 domain of STAT3. Three additional compounds (PD26-BZ01, PD26-TL03 and PD26-AS06) were also able to inhibit this phosphorylation. This study described novel 2,6-disubstituted purine derivatives as potent anticancer agents targeting STAT3.

Keywords: 2,6-Disubstituted purine derivatives; Antitumor; STAT3 inhibitors.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Female
  • Humans
  • Mammary Neoplasms, Experimental / drug therapy
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology
  • Mice
  • Mice, Inbred BALB C
  • Molecular Docking Simulation
  • Molecular Structure
  • Purines / chemical synthesis
  • Purines / chemistry
  • Purines / pharmacology*
  • STAT3 Transcription Factor / antagonists & inhibitors*
  • STAT3 Transcription Factor / metabolism
  • Small Molecule Libraries / chemical synthesis
  • Small Molecule Libraries / chemistry
  • Small Molecule Libraries / pharmacology*
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Purines
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • Small Molecule Libraries
  • purine