Procurement and cytological features of human fallopian tube fimbrial cells by ex vivo imprinting and washing

J Am Soc Cytopathol. 2014 Nov-Dec;3(6):309-318. doi: 10.1016/j.jasc.2014.07.002. Epub 2014 Jul 23.

Abstract

Introduction: Fallopian tube intraepithelial cancer is a postulated precursor of epithelial ovarian carcinomas. As research continues on epithelial ovarian carcinomas' developmental pathways, representative tubal tissue must be procured for diagnostic, biological, and molecular studies without compromising pathological diagnosis.

Materials and methods: Fallopian tube fimbrial epithelia were harvested from postmenopausal women undergoing surgery for non-neoplastic gynecologic lesions (n = 16) and epithelial ovarian carcinomas (n = 6). Cytological imprints and washings were obtained from each fimbria and stained by Diff-Quik and rapid Papanicolaou for general cytomorphology; by Trypan blue for cell viability; and by rapid immunohistochemistry for evaluation of low molecular weight cytokeratin, MIB-1, p53, and high-mobility group A (HMGA2) expression.

Results: Benign and malignant tubal imprints harvests yielded means of 3.5 × 105 and 1.2 × 106 cells/fimbria, respectively, with viabilities higher than 85%. A mean of 2.5 × 105 cells/fimbria was obtained from fimbrial washings. The mean DNA, RNA, and protein contents of benign imprints were 2.4, 1.5, and 67 μg/fimbria, respectively. Benign cell populations contained nearly 97% cytokeratin-positive and p53/HMGA2-negative cells, which were dispersed within a watery to proteinaceous material and rare microcalcifications. Fimbrial imprints from serous carcinomas involving the fimbriae exhibited abnormal p53 and HMGA2 expression, high proliferation, and diagnostic criteria of malignancy, including prominent nucleoli and cell crowding.

Conclusions: Ex vivo harvest from operative specimens allows for collection of cell populations representative of native fimbrial epithelium and free of significant contaminants. Tubal harvest facilitates triaging of cellular material for basic, clinical, and translational studies on cancer pathobiology and also represents a potential diagnostic adjunct to emerging in vivo high-resolution optical technologies.

Keywords: Cell harvest; Cytology; Epithelial ovarian cancer; Fimbria; High-mobility group A2 protein; Human fallopian tube.