What Your Crystal Structure Will Not Tell You about Enzyme Function

Acc Chem Res. 2019 May 21;52(5):1409-1418. doi: 10.1021/acs.accounts.9b00066. Epub 2019 Apr 29.

Abstract

Enzyme function requires that enzyme structures be dynamic. Substrate binding, product release, and transition state stabilization typically involve different enzyme conformers. Furthermore, in multistep enzyme-catalyzed reactions, more than one enzyme conformation may be important for stabilizing different transition states. While X-ray crystallography provides the most detailed structural information of any current methodology, X-ray crystal structures of enzymes capture only those conformations that fit into the crystal lattice, which may or may not be relevant to function. Solution nuclear magnetic resonance (NMR) methods can provide an alternative approach to characterizing enzymes under nonperturbing and controllable conditions, allowing one to identify and localize dynamic processes that are important to function. However, many enzymes are too large for standard approaches to making sequential resonance assignments, a critical first step in analyzing and interpreting the wealth of information inherent in NMR spectra. This Account describes our long-standing NMR-based research into structural and dynamic aspects of function in the cytochrome P450 monooxygenase superfamily. These heme-containing enzymes typically catalyze the oxidation of unactivated C-H and C═C bonds in a multitude of substrates, often with complete regio- and stereospecificity. Over 600 000 genes in GenBank have been assigned to P450s, yet all known P450 structures exhibit a highly conserved and unique fold. This combination of functional and structural conservation with a vast substrate clientele, each substrate having multiple possible sites for oxidation, makes the P450s a unique target for understanding the role of enzyme structure and dynamics in determining a particular substrate-product combination. P450s are large by solution NMR standards, requiring us to develop specialized approaches for making sequential resonance assignments and interpreting the spectral changes that occur as a function of changing conditions (e.g., oxidation and spin state changes, ligand, substrate or effector binding). Solution conformations are characterized by the fitting of residual dipolar couplings (RDCs) measured for sequence-specifically assigned amide N-H correlations to alignment tensors optimized in the course of restrained molecular dynamics (MD) simulations. The conformational ensembles obtained by such RDC-restrained simulations, which we call "soft annealing", are then tested by site-directed mutation and spectroscopic and activity assays for relevance. These efforts have gained us insights into cryptic conformational changes associated with substrate and redox partner binding that were not suspected from crystal structures, but were shown by subsequent work to be relevant to function. Furthermore, it appears that many of these changes can be generalized to P450s besides those that we have characterized, providing guidance for enzyme engineering efforts. While past research was primarily directed at the more tractable prokaryotic P450s, our current efforts are aimed at medically relevant human enzymes, including CYP17A1, CYP2D6, and CYP3A4.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Camphor / metabolism
  • Catalytic Domain
  • Cytochrome P-450 Enzyme System / chemistry
  • Cytochrome P-450 Enzyme System / metabolism*
  • Heme / chemistry
  • Humans
  • Macrolides / metabolism
  • Micromonospora / enzymology
  • Molecular Dynamics Simulation
  • Nuclear Magnetic Resonance, Biomolecular
  • Protein Binding
  • Protein Conformation
  • Pseudomonas putida / enzymology

Substances

  • Macrolides
  • mycinamicins
  • Heme
  • Camphor
  • Cytochrome P-450 Enzyme System

Supplementary concepts

  • Micromonospora griseorubida