Electrospun Nanofiber Membranes Incorporating PDMS-Aerogel Superhydrophobic Coating with Enhanced Flux and Improved Antiwettability in Membrane Distillation

Environ Sci Technol. 2019 May 7;53(9):4948-4958. doi: 10.1021/acs.est.8b07254. Epub 2019 Apr 23.

Abstract

Electrospun nanofiber membranes (ENMs) have garnered increasing interest due to their controllable nanofiber structure and high void volume fraction properties in membrane distillation (MD). However, MD technology still faces limitations mainly due to low permeate flux and membrane wetting for feeds containing low surface tension compounds. Perfluorinated superhydrophobic membranes could be an alternative, but it has negative environmental impacts. Therefore, other low surface energy materials such as silica aerogel and polydimethylsiloxane (PDMS) have great relevancy in ENMs fabrication. Herein, we have reported the high flux and nonwettability of ENMs fabricated by electrospraying aerogel/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) over electrospinning polyvinylidene fluoride- co-hexafluoropropylene (PVDF-HFP) membrane (E-PH). Among various concentrations of aerogel, the 30% aerogel (E-M3-A30) dual layer membrane achieved highest superhydrophobicity (∼170° water contact angle), liquid entry pressure (LEP) of 129.5 ± 3.4 kPa, short water droplet bouncing performance (11.6 ms), low surface energy (4.18 ± 0.27 mN m-1) and high surface roughness ( Ra: 5.04 μm) with re-entrant structure. It also demonstrated nonwetting MD performance over a continuous 7 days operation of saline water (3.5% of NaCl), high antiwetting with harsh saline water containing 0.5 mM sodium dodecyl sulfate (SDS, 28.9 mN m-1), synthetic algal organic matter (AOM).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dimethylpolysiloxanes
  • Distillation
  • Hydrophobic and Hydrophilic Interactions
  • Membranes, Artificial
  • Nanofibers*
  • Water Purification*

Substances

  • Dimethylpolysiloxanes
  • Membranes, Artificial