Proximal gait adaptations in individuals with knee osteoarthritis: A systematic review and meta-analysis

J Biomech. 2019 Apr 18:87:127-141. doi: 10.1016/j.jbiomech.2019.02.027. Epub 2019 Mar 11.

Abstract

Clarifying proximal gait adaptations as a strategy to reduce knee joint loading and pain for individuals with knee osteoarthritis (OA) contributes to understanding the pathogenesis of multi-articular OA changes and musculoskeletal pain in other joints. We aimed to determine whether biomechanical alterations in knee OA patients during level walking is increased upper trunk lean in the frontal and sagittal planes, and subsequent alteration in external hip adduction moment (EHAM) and external hip flexion moment (EHFM). A literature search was conducted in PubMed, PEDro, CINAHL, and Cochrane CENTRAL through May 2018. Where possible, data were combined into a meta-analysis; pooled standardized mean differences (SMD) of between knee OA patients and healthy adults were calculated using a random-effect model. In total, 32 articles (2037 participants, mean age, 63.0 years) met inclusion criteria. Individuals with knee OA had significantly increased lateral trunk lean toward the ipsilateral limb (pooled SMD: 1.18; 95% CI: 0.59, 1.77) along with significantly decreased EHAM. These subjects also displayed a non-significantly increased trunk/pelvic flexion angle and EHFM. The GRADE approach judged all measures as "very low." These results may indicate that biomechanical alterations accompanying knee OA are associated with increased lateral trunk lean and ensuing alterations in EHAM. Biomechanical alterations in the sagittal plane were not evident. Biomechanical adaptations might have negative sequelae, such as secondary hip abductor muscle weakness and low back pain. Thus, investigations of negative sequelae due to proximal gait adaptations are warranted.

Keywords: Biomechanics; Knee osteoarthritis; Meta-analysis; Walking.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't
  • Systematic Review

MeSH terms

  • Adult
  • Biomechanical Phenomena / physiology
  • Female
  • Gait / physiology*
  • Hip Joint / physiology
  • Humans
  • Knee Joint / pathology
  • Male
  • Middle Aged
  • Osteoarthritis, Knee / pathology*
  • Walking / physiology