ABA-type triblock copolymer micellar system with lower critical solution temperature-type sol-gel transition

J Colloid Interface Sci. 2019 Jun 1:545:220-230. doi: 10.1016/j.jcis.2019.03.039. Epub 2019 Mar 13.

Abstract

A temperature sensitive sol-gel transition induced by the self-assembly of amphiphilic copolymers and its application in industry have been the objects of increasing study. We demonstrate here a two-step, reversible addition-fragmentation chain transfer (RAFT) polymerization of an ABA-type copolymer consisting of poly(N,N-dimethylacrylamide)-b-poly(diacetone acrylamide)-b-poly(N,N-dimethylacrylamide) (PDMAA-b-PDAAM-b-PDMAA). This copolymer can be easily dispersed in water, and this dispersion is critical for its lower critical solution temperature (LCST)-type sol-gel transition, which was monitored using dynamic light scattering (DLS), transmission electron microscopy (TEM), and rheology analysis, in addition to temperature-dependent 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). Results revealed an abnormal sphere-to-worm micellar transition of this ABA copolymer at the LCST point, which could be affected by the length of the PDAAM block (B-block), the length as well as the distribution of the PDMAA block (A-block), and the concentration of the copolymer dispersion. Thus, copolymer dispersion could be feasibly used for drug loading at a low temperature, which could then be transformed into a gel at an elevated temperature. The loading and controllable release of the model drug of paracetamol into and out of a copolymer gel was further determined. The sustained release behavior was also studied using the Rigter-Peppas model.

Keywords: Block copolymer; Drug delivery; LCST; Morphology; RAFT polymerization; Self-assembly.