Hollow Multi-Shelled Structure with Metal-Organic-Framework-Derived Coatings for Enhanced Lithium Storage

Angew Chem Int Ed Engl. 2019 Apr 8;58(16):5266-5271. doi: 10.1002/anie.201814563. Epub 2019 Mar 12.

Abstract

Herein, we present heterogeneous hollow multi-shelled structures (HoMSs) prepared by exploiting the properties of the metal-organic framework (MOFs) casing. Through accurately controlling the transformation of MOF layer into different heterogeneous casings, we can precisely design HoMSs of SnO2 @Fe2 O3 (MOF) and SnO2 @FeOx -C(MOF), which not only retain properties of the original SnO2 -HoMSs, but also structural information from the MOFs. Tested as anode materials in LIBs, SnO2 @Fe2 O3 (MOF)-HoMSs demonstrate superior lithium-storage capacity and cycling stability to the original SnO2 -HoMSs, which can be attributed to the topological features from the MOF casing. Making a sharp contrast to the electrodes of SnO2 @Fe2 O3 (particle)-HoMSs fabricated by hydrothermal method, the capacity retention after 100 cycles for the SnO2 @Fe2 O3 (MOF)-HoMSs is about eight times higher than that of the SnO2 @Fe2 O3 (particle)-HoMS.

Keywords: hollow multi-shelled structures; lithium storage; lithium-ion batteries; metal-organic frameworks; structural information.