Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochemistry. 1988 Aug 9;27(16):6054-61.

Sequence of cloned enzyme IIN-acetylglucosamine of the phosphoenolpyruvate:N-acetylglucosamine phosphotransferase system of Escherichia coli.

Author information

  • 1Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada.

Abstract

In Escherichia coli, N-acetylglucosamine (nag) metabolism is joined to glycolysis via three specific enzymes that are the products of the nag operon. The three genes of the operon, nagA, nagB, and nagE, were found to be carried by a colicin plasmid, pLC5-21, from a genomic library of E. coli [Clarke, L., & Carbon, J. (1976) Cell (Cambridge, Mass.) 9,91-99]. The nagE gene that codes for enzyme IIN-acetylglucosamine of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) was sequenced. The nagE sequence is preceded by a catabolite gene activator protein binding site and ends in a putative rho-independent termination site. The amino acid sequence determined from this DNA sequence shows 44% homology to enzymes IIglucose and IIIglucose of the PTS. Enzyme IIN-acetylglucosamine, which has 648 amino acids and a molecular weight of 68,356, contains a histidine at residue 569 which is homologous to the active site of IIIglc. Sequence homologies with enzymes IIglucose, II beta-glucoside, and IIsucrose indicate that residues His-190, His-213, and His-295 of enzyme IInag are also conserved and that His-190 is probably the second active site histidine. Other sequence homologies among these enzymes II suggest that they contain several sequence transpositions. Preliminary models of the enzymes II are proposed.

PMID:
3056518
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk